
 
 

Approved for public release; further dissemination unlimited 

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint 
UCRL-JRNL-203432 

Efficient traffic grooming 
in SONET/WDM BLSR 
networks 

Abdur R. B. Billah, Bin Wang, Abdul A. S. Awwal  

 

This article was submitted to Optical Engineering 

 

To be published May 2004 

 

 



 
 

 

DISCLAIMER 
 
This document was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California.  The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and shall 
not be used for advertising or product endorsement purposes. 
 
This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited or 
reproduced without the permission of the author. 
 

 



Efficient Traffic Grooming in SONET/WDM BLSR Networks 1

Abdur R. B. Billah, Bin Wang‡ Abdul A.S. Awwal
Department of Computer Science and Engineering Lawrence Livermore National Laboratory

Wright State University P.O. Box -808
Dayton, OH 45435 Livermore, CA 94551-0808

Corresponding author: Bin Wang
bwang@cs.wright.edu
Tel: (937) 775-5115

FAX: (937) 775-5133

Abstract

In this paper, we study traffic grooming in SONET/WDM BLSR networks under the uniform all-to-all
traffic model with an objective to reduce total network costs (wavelength and electronic multiplexing costs),
in particular, to minimize the number of ADMs while using the optimal number of wavelengths. We derive
a new tighter lower bound for the number of wavelengths when the number of nodes is a multiple of4. We
show that this lower bound is achievable. All previous ADM lower bounds except perhaps that in [1] were
derived under the assumption that the magnitude of the traffic streams (r) is oneunit (r = 1) with respect to the
wavelength capacity granularityg. We then derive new, more general and tighter lower bounds for the number
of ADMs subject to thatthe optimal number of wavelengths is used, and propose heuristic algorithms (circle
construction algorithm and circle grooming algorithm) that try to minimize the number of ADMs while using
the optimal number of wavelengths in BLSR networks. Both the bounds and algorithms are applicable to any
value ofr and for different wavelength granularityg. Performance evaluation shows that wherever applicable,
our lower bounds are at least as good as existing bounds and are much tighter than existing ones in many cases.
Our proposed heuristic grooming algorithms perform very well with traffic streams of larger magnitude. The
resulting number of ADMs required is very close to the corresponding lower bounds derived in this paper.

Index Terms— SONET/WDM networks, traffic grooming, BLSR networks, wavelength lower bounds, ADM
lower bounds.
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1 Introduction

Wavelength division multiplexing (WDM) networks have emerged as the choice for the next generation
backbone networks due to its high capacity (on the order of Tb/s per fiber) and many other features. It is evident
that the number of traffic demands is likely to be much larger than the number of wavelengths available and
that individual traffic demand is likely to require a smaller bandwidth than that of a full wavelength channel.
Both factors call for multiplexing low-speed traffic requests onto a wavelength to efficiently utilize network
resources. The multiplexing of lower rate traffic streams in current technologies employs time-division mul-
tiplexing (TDM) that requires electro-optic conversions. It has been recognized that the cost of electro-optic
equipment such as SONET add-drop multiplexers (ADMs) is one of the dominant network cost metrics [1, 2].
These factors give rise to the concept of traffic grooming that is defined as the techniques of multiplexing
lower speed traffic streams onto appropriate wavelength channels in order to minimize the cost metric and/or to
optimize the throughput [1–3].

Much work [1, 2, 4–17] has focused on traffic grooming in SONET/WDM ring networks. Previous work
has considered many aspects of traffic grooming, including minimizing the number of wavelengths, minimizing
the number of ADMs, considering different traffic models, using different network architectures, incorporating
switching capability, wavelength conversion, transceiver tunability and so on. Modiano et al. [7] and Wan et
al. [10] have proved that the general traffic grooming problem isNP-complete. The authors in [11, 14, 16, 18]
formulate the traffic grooming problem as an integer linear programming (ILP) based optimization problem.
The limitation of the ILP approach is that the numbers of variables and equations increase explosively as the size
of the network increases. High computational complexity makes this approach unattractive in many practical
cases.

The bounds on the number of ADMs needed for traffic grooming in SONET/WDM ring networks have
been addressed in previous work including [1, 2, 5–8, 13, 17]. For uniform all-to-all traffic, lower bounds on
the numbers of ADMs required for BLSR/2 rings with sub-wavelength traffic have been formulated in [1]. The
bounds assume the availability of wavelength converters in the network and are rather loose. The work by
Simmons et al. [5] considers all-to-all uniform and distance-dependent traffic models for BLSR networks. Ex-
pressions on approximate number (not necessarily lower bounds) of ADMs based onsuper-nodeapproximation
were derived for odd number of nodes only. No algorithms for grooming traffic streams were presented. Lower
bounds on the number of ADMs have been calculated algorithmically for both unidirectional and bidirectional
rings in [2] for all-to-all uniform traffic model. However, no lower bound expressions were given. Heuristic
algorithms for grooming traffic have been presented. The grooming algorithm developed in [2] for all-to-all
uniform traffic is based on traffic circles constructed using algorithms developed in [19]. To the best of our
understanding, the circle construction algorithm of [19] for even number of nodes (N ) does notinclude all
traffic streams in one direction of the ring for all to-all uniform traffic model in BLSR networks, and therefore
is not entirely correct for BLSR networks. Consequently, the number of circles constructed by that algorithm
for evenN is dN2

8 e which is less than the lower bound on the number of circles we derive in Section 3 when
N = 4m,m ∈ Z+. Wan et al. [10] studied the grooming of arbitrary traffic in BLSR networks. General lower
bounds that are claimed to be better than the bounds of [4] were derived for arbitrary traffic in BLSR networks.
A second lower bound, more suited for all-to-all uniform traffic model has also been derived. Various approxi-
mation algorithms were proposed and their approximation ratio were analyzed. Modiano et al. [7] and Qiao et
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al. [2] have shown through examples that it is not always possible to minimize the number of wavelengths and
the number of ADMs simultaneously. It has also been shown in [4] that minimizing the number of ADMs and
the number of wavelengths are intrinsically different problems and that there exist cases where the two minima
cannot be achieved simultaneously.

In this work, we study traffic grooming in BLSR networks under the uniform all-to-all traffic model
with an objective to reduce total network costs (wavelength and electronic multiplexing costs), in particular,
to minimize the number of ADMswhile using the optimal number of wavelengths. All previous ADM lower
bounds except perhaps that in [1] were derived under the assumption that the magnitude of the traffic streams (r)
is oneunit (r = 1) with respect to the wavelength capacity granularityg. We then derive new, more general and
tighter lower bounds for the number of ADMs subject to thatthe optimal number of wavelengths is used, and
propose heuristic algorithms (circle construction algorithm and circle grooming algorithm) that try to minimize
the number of ADMs while using the optimal number of wavelengths in BLSR networks. Both the bounds and
algorithms are applicable to any value ofr and for different wavelength granularityg. Performance evaluation
shows that wherever applicable, our lower bounds are at least as good as existing bounds and are much tighter
than existing ones in many cases. Our proposed heuristic grooming algorithms perform very well with traffic
streams of larger magnitude. The resulting number of ADMs required is very close to the corresponding lower
bounds derived in this paper. Similar studies for UPSR networks have been reported in the complementary
work [20].

The rest of the paper is organized as follows. Section 2 addresses the lower bounds on the number
of traffic circles and wavelengths needed. Section 3 proposes algorithms to construct the optimal number of
traffic circles for odd and even number of nodes. In Section 4, expressions for new, tighter lower bounds on
the number of ADMs are derived. In Section 5, an efficient algorithm for grooming circles in BLSR networks
is described. Results from simulations, derived lower bound expressions, and other work are compared and
explained in Section 6. Finally, Section 7 concludes the paper.

2 New Bounds on the Number of Wavelengths

The lower bounds on the number of wavelengths necessary for traffic grooming in both SONET/WDM
UPSR and SONET/WDM BLSR/2 networks were studied in previous work including [1, 2, 6]. In this section,
we derive tighter lower bounds on the number of wavelengths needed in BLSR networks under uniform traffic
(full-duplex and all-to-all). We also show that all the bounds presented are achievable.

In the sequel, we useN, g, andr to represent the number of nodes, the granularity of a wavelength, and
the size of a inter-node traffic stream in terms of low rate tributary streams (e.g., OC-3), respectively. We also
take into account the impact of traffic splitting on the wavelength lower bounds. By traffic splitting, we mean
that a traffic stream at a source node may be decomposed into several smaller streams, and each smaller stream
may be groomed onto a different wavelength.

In SONET/WDM BLSR networks, a traffic stream from nodei to nodej is carried through the shortest
path, i.e., with the minimum number of hops [21]. The maximum hop count of a path is, therefore, limited toN

2

for anN -node ring. However, each wavelength in a BLSR/2 ring can carry only up to50% of its full capacity.
The rest of its capacity is reserved for carrying protection traffic [1]. We calculate the wavelength lower bounds
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for BLSR networks for odd and even number of nodes individually. We first compute the number of “circles”
that are required to support uniform all-to-all traffic ofr low rate streams inone directionof the ring. A circle
is formed by inter-node traffic streams of the same size in the same direction. The traffic in the reverse direction
is carried through another fiber in exactly the same way. Aclosedor full circle is one that is constructed out of
several traffic streams with overlapping end-nodes such that there is no “gap” between a pair of nodes. A circle
that has one or more gaps between pairs of nodes is called anopen-endedcircle. After constructing the circles,
the number of wavelengths is calculated in terms ofr, g, and the number of circles.

2.1 Circles in BLSR Networks with Odd Number of Nodes

In a BLSR network with odd number (N ) of nodes, there is always a single shortest path from a source
to a destination. The maximum number of hops between any pair of nodes isN−1

2 . Traffic from a source node
s to every other destination noded goes through1, 2, · · · N−1

2 hops. We observe the following properties and
utilize them to determine the number of circles in a BLSR network with odd number of nodes.

Property 1: In an N -node BLSR network whereN is odd, the number of inter-node traffic withk hops,
k = 1, 2, · · · , N−1

2 is equal to the number of nodesN in the network.

Property 2: In an N -node BLSR network whereN is odd, the number of circles consisting of inter-node
traffic with k hops is alwaysk, wherek = 1, 2, · · · N−1

2 .

For example, only one circle is required to carry all inter-node traffic between adjacent nodes in one
direction. Two circles are required to carry traffic streams between nodes that are two hops apart, and so on.
The total number of circles is therefore given by:1 + 2 + 3 + · · · N−1

2 = N2−1
8 . This is the minimum number

of circles that include all traffic streams. The lower bound on the number of circles for oddN is thus,

Co
LB =

N2 − 1
8

(2.1)

2.2 Circles in BLSR Networks with Even Number of Nodes

In a SONET/WDM BLSR network with even number of nodes, the maximum number of hops between
any pair of nodes isN2 . Traffic from a source nodes to every other destination noded goes through1, 2, · · · N

2

hops. There is always a single shortest path between a pair of nodes at a hop distance less than or equal to
N−2

2 . However, there are two shortest paths between a pair of nodes that are at a hop distanceN
2 , of which only

one is used for traffic in one direction of the ring [21]. We observe the following properties and utilize them to
determine the number of circles in a BLSR network with even number of nodes.

Property 3: In anN -node BLSR network whereN is even, the number of inter-node traffic withk hops is
N, k = 1, 2, · · · N−2

2 .

Property 4: In an N -node BLSR network whereN is even, the number of circles consisting of inter-node
traffic with k hops is alwaysk, k = 1, 2, · · · N−2

2 .
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Figure 1: In a BLSR network with even number of nodes (6 nodes in this example), three 3-hop paths ({(0, 3),
(2, 5), (4, 1)}) can be accommodated on two wavelengths if nodes are capable of wavelength conversion. This
scenario, however, can be avoided using an intelligent circle construction as will be shown in Section 3.

Property 5: In an N -node BLSR network whereN is even, the number of inter-node traffic necessary to
include all traffic at distanceN2 is N

2 .

As stated inProperty5, the number of necessary paths between a pair of nodes at hop-distanceN
2 is

N
2 . We note that there are two paths between a pair of nodes that are apart by a hop distance ofN

2 . But only
one path in one direction of the ring is required. By carefully assigning each traffic stream to a circle, it is
possible to accommodate them inbN

4 c+1 circles. Fig. 1 shows how such a circle may be constructed. We note
that this assignment (Fig. 1) appears to require that nodes have wavelength conversion capabilities. However,
wavelength conversion is actually not needed if some circles are constructed by combining one path with a hop
distanceN

2 and two other carefully selected paths with a hop distance (< N
2 ). That is, the scenario depicted

in Fig. 1 can be avoided all together and will be shown in Section 3 using an intelligent circle construction
algorithm. The total number of circles is then given by:(1+2+3+ · · · N−2

2 +bN
4 c+1) = N(N−2)

8 +bN
4 c+1.

This is the minimum number of circles required to include all traffic streams. The lower bound on the number
of circles for evenN can be derived from above expression as,

Ce
LB =

{
N2

8 + 1 if N is a multiple of 4,

dN2

8 e if N is even, not a multiple of 4.
(2.2)

Combining Eqs. (2.1) and (2.2), we have the lower bounds on the number of circles for BLSR networks under
the uniform all-to-all traffic model as:

CLB =





N2−1
8 if N = 2m + 1,

N2

8 + 1 if N = 4m,

dN2

8 e if N = 4m + 2,

(2.3)

wherem ∈ Z+. In addition, the above lower bounds are all achievable. In particular, the lower bound when
N = 4m is new and tighter than any previous lower bounds reported and is achievable as shown in Section 3.
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2.3 Lower Bounds on Number of Wavelengths inBLSR/2 Rings

Two scenarios can be pictured depending on whether the traffic originating from a node can be split
onto more than one wavelength. Note that a node must have more than one SONET ADM to groom the split
traffic to different wavelengths. Ifr andg are not multiples and traffic is not allowed to be split across multiple
wavelengths, then a part of every wavelength will remain unused resulting in more necessary wavelengths.
Whetherr andg are multiples or not has an impact on the number of wavelengths required.

The minimum number of wavelengths required in a SONET/WDM BLSR/2 network in various scenar-
ios can be formulated in terms of the number of circles determined above.

• Case 1: If traffic splitting is allowed org/2 is a multiple off (f = r modg/2), Wmin =




h(N2−1)
8 + d (N2−1)f

4g e if N = 2m + 1,
h(N2+8)

8 + d (N2+8)f
4g e if N = 4m,

hdN2

8 e+ d2dN2

8
ef

g e if N = 4m + 2,

(2.4)

wherem ∈ Z+, h = r div g/2 andf = r modg/2.

• Case 2: If traffic splitting is not allowed andg/2 is not a multiple off , Wmin =




h(N2−1)
8 + dN2−1

8b g
2f
ce if N = 2m + 1,

h(N2+8)
8 + d (N2+8)

8d g
2f
e e if N = 4m,

hdN2

8 e+ d d
N2

8
e

b g
2f
c e if N = 4m + 2,

(2.5)

wherem ∈ Z+, h = r div g/2 andf = r modg/2.

The above bounds can be easily extended to calculate the lower bounds for BLSR/4 networks by replac-
ing g/2 with g, and is omitted here.

3 Circle Construction Algorithm

Unlike in UPSR networks [2, 17], construction of circles in BLSR networks is not straightforward. We
propose two separate algorithms for constructing circles for networks with odd and even number of nodes,
respectively.

3.1 Algorithm I – Constructing Circles for Odd N

In Section 2, we have seen that the minimum number of circles for networks with odd number of nodes
N is N2−1

8 . We propose an algorithm that constructs exactlyN2−1
8 full circles in polynomial time to include

all the traffic streams in a all-to-all traffic model in BLSR networks. The pseudo code of Algorithm I is given
in Fig.( 2). Initially, we construct full circles that have either three or four traffic streams. We also point out

5



1. ProcedureconstructCircles Odd() {
2. // Construct circles with three traffic streams
3. for i = 0 to (N − 1)/2− 1 {
4. construct full circle with nodes
5. {i, i + 1, (N + 1)/2 + i}
6. } //endi loop
7. // Construct circles with four traffic streams
8. for i = 0 to (N − 1)/2− 1 {
9. for s = (N − 1)/2 downtoi + 2 {
10. construct full circle with nodes
11. {i, s, (N + 1)/2 + i, N + i + 1− s}
12. } //ends loop
13. } //endi loop
14. } // end

Figure 2: Algorithm I for circle construction in BLSR networks with oddN .

that the circles are so constructed that they can be modified to have more traffic streams (e.g., five, six, etc.) if
necessary for efficient traffic grooming in later phases. The nodes are numbered0 . . . N − 1.

The firstfor loop (lines 3-6) constructsN−1
2 full circles, each of which has 3 traffic streams. The second

nestedfor loop (lines 8-14) constructsN−1
2 ×((N−1

2 −1)+(N−1
2 −2)+ . . .+2+1) = (N−1)(N−3)

8 full circles,
each of which has 4 traffic streams. The total number of full circles is exactlyN2−1

8 and these circles include all
the traffic streams of a uniform all-to-all traffic model in BLSR networks. Therefore, the algorithm is optimal.
An algorithm for constructing the optimal number of circles for oddN is given in [19]. However, our approach
is different from theirs. Circles constructed in our algorithm can be restructured to contain number of traffic
streams other than three or four as is shown in Example 1.

In the sequel, we represent a circle by the end-nodes of each traffic stream separated by a dash “−” and
enclosed by a pair of parentheses “()”. A representation that contains one or more commas is an open-ended
circle while a representation that does not contain any comma and that has the same ending node as the starting
node in the representation is a closed circle. The following example illustrates how Algorithm I constructs the
circles.

Example 1: N = 17 (2m + 1,m = 8 )
In this case, the number of circles that have 3 traffic streams is eight (Eq. (4.4)) and that have 4 traffic streams
is twenty eight (Eq. (4.5)). Accordingly, the firstfor loop constructs the following eight 3-traffic stream circles.
(0−1−9−0), (1−2−10−1), (2−3−11−2), (3−4−12−3), (4−5−13−4), (5−6−14−5), (6−7−15−
6), (7− 8− 16− 7). The second nestedfor loop constructs the following twenty eight 4-traffic stream circles.
(0−8−9−10−0), (0−7−9−11−0), (0−6−9−12−0), (0−5−9−13−0), (0−4−9−14−0), (0−3−9−15−
0), (0−2−9−16−0), (1−8−10−11−1), (1−7−10−12−1), (1−6−10−13−1), (1−5−10−14−1), (1−4−
10−15−1), (1−3−10−16−1), (2−8−11−12−2), (2−7−11−13−2), (2−6−11−14−2), (2−5−11−15−
2), (2−4−11−16−2), (3−8−12−13−3), (3−7−12−14−3), (3−6−12−15−3), (3−5−12−16−3), (4−8−
13−14−4), (4−7−13−15−4), (4−6−13−16−4), (5−8−14−15−5), (5−7−14−16−5), (6−8−15−16−6).
The circles generated above include all the traffic streams and are optimal. In addition, circles constructed by
Algorithm I can be restructured to contain number of traffic streams other than three or four. For example,
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consider two 4-traffic stream circlesc1 = (0− 8− 9− 10− 0) andc2 = (1− 8− 10− 11− 1). Traffic stream
8− 10 from c2 can be exchanged with two traffic streams(8− 9− 10) from c1 while keeping both the circles
closed. The resulting circles are(0 − 8 − 10 − 0) and(1 − 8 − 9 − 10 − 11 − 1), one of which has three
traffic streams and the other has five traffic streams. The latter two circles contain the same traffic streams as
the former two circles. Such a feature can be useful for efficient grooming of circles. 2

3.2 Algorithm II – Constructing Circles for Even N

The minimum number of circles for networks with even number of nodesN is N2

8 + 1 whenN = 4m

and isdN2

8 e whenN = 4m + 2, m ∈ Z+. In either case, the number of full circles isN(N−2)
8 . Therefore, the

number of open-ended circles isbN
4 c+ 1. We propose an algorithm that constructs exactly the above numbers

of circles in polynomial time to include all the traffic streams. The nodes are numbered0 . . . N − 1. The
algorithm is outlined in Fig. 3.

The firstfor loop, Loop 1 (lines 4-7) is applicable only whenN = 4m (N completely divisible by4).
This loop constructsN4 full circles. Each such circle contains four traffic streams of strideN

4 . Loop 2 (lines
10-13) constructsdN

4 e full circles, each of which has four traffic streams. Loop 3 (lines 15-20), a nested loop,
constructs(dN

4 e − 2)(N
2 ) full circles, each of which has four traffic streams. Loop 4 (lines 22-25) formsbN

4 c
full circles, each of which has three traffic streams. Loop 5 (lines 27-30) formsbN

4 c open-endedcircles, each of
which has two consecutive traffic streams involving three nodes. Finally, Loop 6 constructs the last open-ended
circle. This circle containsdN

4 e traffic streams with all non-overlapping nodes so that the number of nodes
involved in the circle is2 · dN

4 e.
By examining the algorithm closely, we see that the total number of full circles, whenN = 4m, is (N

4

+dN
4 e+ N

2 (dN
4 e − 2) + bN

4 c) = N(N−2)
8 , and whenN = 4m + 2, is dN

4 e+ N
2 (dN

4 e− 2) + bN
4 c) = N(N−2)

8 .

The total number of open-ended circles in either case isbN
4 c + 1. We consider two examples,N = 10 and

N = 12 to illustrate the two cases (N = 4m andN = 4m + 2).

Example 2: N=10 (4m + 2,m = 2)
The firstd10

4 e = 3 full circles (Loop 2) are(1− 2− 6− 7− 1), (3− 4− 8− 9− 3), (4− 5− 9− 0− 4). The
next 10

2 (d10
4 e − 2) = 5 full circles (Loop 3) are(0 − 2 − 5 − 7 − 0), (1 − 3 − 6 − 8 − 1), (2 − 4 − 7 − 9 −

2), (3− 5− 8− 0− 3), (4− 6− 9− 1− 4). The nextb10
4 c = 2 full circles (which contain 3 traffic streams)

are(0 − 5 − 6 − 0), (2 − 7 − 8 − 2) (Loop 4). Finally, theb10
4 c + 1 = 3 number of open-ended circles are,

(1− 5, 6− 1), (3− 7, 8− 3), (0− 1, 2− 3, 4− 9) (Loop 5 and 6). 2

Example 3: N=12 (4m,m = 3)
The first 12

4 = 3 full circles (Loop 1) are(0− 3− 6− 9− 0), (1− 4− 7− 10− 1), (2− 5− 8− 11− 2). The
nextd12

4 e = 3 full circles (Loop 2) are(1− 2− 7− 8− 1), (3− 4− 9− 10− 3), (5− 6− 11− 0− 5). The
next 12

2 (d12
4 e − 2) = 6 full circles are(0 − 2 − 6 − 8 − 0), (1 − 3 − 7 − 9 − 1), (2 − 4 − 8 − 10 − 2), (3 −

5− 9− 11− 3), (4− 6− 10− 0− 4), (5− 7− 11− 1− 5). The nextb12
4 c = 3 full circles (which contain 3

traffic streams) are(0− 6− 7− 0), (2− 8− 9− 2), (4− 10− 11− 4). Finally, theb12
4 c+ 1 = 4 number of

open-ended circles are,(1− 6, 7− 1), (3− 8, 9− 3), (5− 10, 11− 5), (0− 1, 2− 3, 4− 5). 2

The circle construction algorithm [19] used for grooming uniform traffic in BLSR networks in [2] does
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1. ProcedureconstructCircles Even() {
2. //Loop 1: Construct N/4 full circles when N=4m
3. if(N==4m)
4. for i = 0 to (N − 1)/2− 1 {
5. construct full circle with nodes
6. {i, i + N/4, N/2 + i, 3N/2 + i, i}
7. } //endi loop
8. } //end if
9. //Loop 2: ConstructdN

4
e full circles

10. for i = 1 to N/2− 1, step 2{
11. construct full circle with nodes
12. {i, i + 1, (N/2) + i, (N/2 + i + 1)%N, i}
13. } //endi loop
14. //Loop 3: ConstructN

2
(dN

4
e − 2) full circles

15. fors = 2 to dN
4
e − 1 {

16. for i = 0 to N/2− 1 {
17. construct full circle with nodes
18. {i, i + s, N/2 + i, (N/2 + i + 1)%N, i}
19. } //endi loop
20. //ends loop
21. //Loop 4: ConstructbN

4
c full circles

22. for i = 0 to bN
4
c − 1 {

23. construct full circle with nodes
24. {i, N/2 + i, (N/2 + i + 1)%N, i}
25. } //endi loop
26. // Loop 5: ConstructbN

4
c open-ended circles

27. for i = 0 to bN
4
c − 1 {

28. construct open-ended circle using two traffic streams
29. (i + N/2, i), (i, N/2 + i− 1)
30. } //endi loop
31. //Loop 6: Construct the last open-ended circle
32. for i = 0 to N/2− 2, step 2{
33. construct open-ended circle by adding traffic streams
34. add traffic(i, i + 1))
35. if N == 4m + 2 {
36. add traffic(N/2− 1, N − 1))
37. } //end if
38. } //endi loop
39. } // end

Figure 3: Algorithm II for circle construction with evenN .

not account for all traffic streams. In particular, half of the traffic streams between pairs of nodes that areN
2 (N

is even) hops apart are not included in the algorithm for circle construction presented in [19]. The algorithm
based on Complementary Assembling with Dual Strides (CADS) [19] whenN is even, describes the first step
that constructsN4 circles as:
Step 1: fors = N

2 (a special case)
for i = 0, 1, . . . N

4 − 1
assemble(i, N

2 ) and(N
2 + i, N

2 ) in one circle
Therefore, the algorithm does not account for the traffic streams between node pairs(N

4 , 3N
4 ), (N

4 + 1, 3N
4 +

1) . . . (N
2 −1, N−1). Consequently, the number of circles constructed by that algorithm [19] for evenN is dN2

8 e
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which is less than the lower bound on the number of circles that is derived in Eq. (2.2) whenN = 4m,m ∈ Z+.

4 Traffic Grooming and New ADM Lower Bounds

In this section we derive new general and tighter lower bounds on the number of ADMs for traffic
grooming in BLSR networks under the all-to-all uniform traffic model. To the best of our knowledge, our
bounds are tighter and more general than all lower bounds derived earlier. The derived lower bounds are
applicable to any integral traffic stream magnituder. Under the all-to-all uniform traffic model, the number of
traffic streams in one direction (on one fiber) isNp = N(N − 1)/2. The number of circles (partial and full) in
one direction has been derived in Eq. (2.3).

4.1 Preliminaries

When circles are constructed out of traffic streams, the average number of traffic streams per circle can
be expressed as,

N(N − 1)
2

8
N2 − 1

=
4N

N + 1
(4.1)

for oddN and
N(N − 1)

2
8

N2
=

4(N − 1)
N

(4.2)

for evenN . In either case, the average number of traffic streams carried by each circle tends toward4 asN

increases. The number of circles that can be bundled together onto one wavelength depends on the magnitude
of the traffic streamr and is equal tobg

r c. To determine the appropriate number of traffic streams in a circle
and the best way of packing the circles onto wavelengths are the main challenges for optimal traffic grooming.
Intuitively, constructing circles with open ends may result in inefficient traffic grooming. Such circles pose
obstacles to attain optimal solutions in terms of the minimum number of wavelengths and/or the minimum
number of ADMs required. Note, however, that one or more open ended circles are unavoidable whenN is
even as shown in the previous section. Having too many traffic streams in some circles may force other circles to
have too few traffic streams, and sometimes may lead to open ended circles. Any open ended circle in networks
with odd number of nodes is suboptimal in terms of the number of wavelengths and could also be suboptimal
in terms of the number of ADMs as well. In light of the above observations, we investigate the properties of a
SONET/WDM BLSR network and formulate several lemmas.

Lemma 1: A closed circle must have at least three end-points in a BLSR network with odd or even number of
nodes.

Proof: To construct a closed circle with two end-points, we can have at most two traffic streams in the circle
such that one end node of a traffic stream terminates at the start node of the other traffic stream. The longest
possible stride of a traffic stream in a BLSR network isN−1

2 for oddN . Two such traffic streams span over
exactlyN − 1 strides (arcs), leaving a single stride (between the start node of the first traffic stream and the end
node of the second traffic stream) open, and therefore forcing the circle to have at least three end-points.

The case for even number of nodes (N ) is somewhat subtle. The longest possible stride of a traffic
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stream in a BLSR network isN2 . Apparently, two such traffic streams span over exactlyN strides, forming
a circle with two end-points. However, since the two traffic streams in the circle are between the same pair
of nodes and for traffic indifferent directions, they cannot be on the same fiber (by the definition of a BLSR
network [21]). Therefore, one traffic stream in the circle must be replaced by at least two traffic streamson the
same fiberwith shorter strides, thereby resulting in a circle with at least three end-points. This proves the claim.

2

Given that the average number of traffic streams per circle is4N
N+1 for oddN and 4(N−1)

N for evenN ,
constructing circles with four or three traffic streams tends to make the number of traffic streams per circle
balanced over all circles. Moreover, asN increases therelative number of circles with four traffic streams
should increase and that of circles with three traffic streams should decrease. By carefully constructing the
circles with four or three traffic streams, it is possible to accommodate all traffic streams using optimal number
wavelengths as shown in the previous section. The following lemma quantifies the numbers of circles with four
or three traffic streams as functions ofN .

Lemma 2: When full circles with four or three traffic streams are constructed for traffic in one direction in a
BLSR network with an odd number of nodes,N , all the circles can be full such that the number of circles is
optimal.

Proof: Let no
3(N) andno

4(N) be the numbers of circles with three and four traffic streams, respectively. Then
no

4(N) = No
c (N)− no

3(N), whereNo
c (N) is the total number of circles for oddN . The total number of traffic

streams isN(N−1)
2 . Therefore,

3 · no
3(N) + 4 · (No

c (N)− no
3(N)) =

N(N − 1)
2

(4.3)

SubstitutingNo
c (N) = N2−1

8 and solving forno
3(N), we have

no
3(N) =

N − 1
2

, (4.4)

and then solving forno
4(N) we have,

no
4(N) =

(N − 1)(N − 3)
8

. (4.5)

The right hand side of Eq. (4.4),N−1
2 is always an integer ifN is odd. Similarly, The right hand side of

Eq. (4.5),(N−1)(N−3)
8 is also always an integer ifN is odd. Therefore, the circles in both categories can all be

full and closed. The total number of circles constructed this way isN−1
2 + (N−1)(N−3)

8 = N2−1
8 , which is the

optimal number of circles for oddN shown in Eq. (2.3). The algorithm in Fig. 2 constructs exactlyN−1
2 and

(N−1)(N−3)
8 full circles of three or four traffic streams respectively whenN is odd. 2

Lemma 3: The number offull circles that can be constructed for traffic streams in one direction in a BLSR
network is at leastN(N−2)

8 whenN is even and the number ofopen-endedcircles isbN
4 c+1 if the total number

of circles constructed is optimal.
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Proof: From Property 4, we see that whenN is even the number of circles consisting of inter-node traffic withk

hops is alwaysk, k = 1, 2, · · · N−2
2 . By limiting k from 1 throughN−2

2 , we exclude the traffic streams between

pairs of nodes that areN2 hop apart. Therefore, the total number of circles is1 + 2 + · · · + N−2
2 = N(N−2)

8 ,
which is always an integer whenN is even. Thus, the circles can be allfull. The number of traffic streams that
are accommodated in these circles isN(N−1)

2 − N
2 = N(N−2)

2 . The number of remaining traffic streams isN
2 ,

which can be accommodated at most inN
2 circles (one in each circle) and at least inbN

4 c+ 1 circles (optimal)
as shown in Fig. 1. This proves the lemma. Thus,

ne
f (N) =

N(N − 2)
8

, (4.6)

wherene
f (N) is the number of full circles whenN is even. Algorithm II in Fig. 3 constructs exactlyN(N−2)

8

full circles consisting of three or four traffic streams whenN is even. 2

We use Lemma 3 and Algorithm II (outlined in Section 3) to determine the number of circles of each
type. In essence, Algorithm II proves the claim in Lemma 3 through simulation and constructs exactlyN(N−2)

8

full circles andbN
4 c + 1 open-ended circles. Note that a full circle with 3 traffic streams involves three nodes,

and an open-ended circle with two consecutive traffic streams (that have one overlapping node) also involve
three nodes. Therefore, a 3-traffic stream full circle and a 3-node 2-traffic stream open-ended circle are the
same in terms of the number of required ADMs per circle for traffic grooming. However, the ADM efficiency
or utilization (defined as the number of ADMs needed per traffic stream) is better for full circles. We therefore
classify the circles created in Loop 4 and Loop 5 in Algorithm II as 3-node circles (that contain either two or
three traffic streams) and quantify as,ne

3(N) = bN
4 c+ bN

4 c = 2bN
4 c. More specifically,

ne
3(N) =

{
N
2 if N = 4m,
N
2 − 1 if N = 4m + 2,

(4.7)

wherem ∈ Z+. The last open-ended circle generated in Loop 6 of Algorithm II involves2 · dN
4 e nodes which

is ≥ 4 for N > 4. In calculating the ADM lower bound, we will be underestimating the number of required
ADMs if we consider the circle as a 4-node circle (thereby making our ADM bound a little loose). Subtracting
Eq. (4.7) from Eq. (2.3) for an evenN , the number of 4-node circles can be expressed as:

ne
4(N) = dN

2

8
e − N

2
+ 1 (4.8)

Let n3(N) andn4(N) be the number of circles involving three and four nodes respectively such that
the total number of circles forN nodes is optimal. Then combining Eqs. (4.4) and (4.7), we have,

n3(N) =





N−1
2 if N = 2m + 1,

N
2 if N = 4m,
N
2 − 1 if N = 4m + 2,

(4.9)

wherem ∈ Z+. Similarly, combining Eqs. (4.5) and (4.8), we have,

n4(N) =

{
(N−1)(N−3)

8 if N = 2m + 1,

dN2

8 e − N
2 + 1 if N = 2m,

(4.10)
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wherem ∈ Z+.

It follows from Eqs. (4.4) and (4.7) that the number of circles with three nodes increases linearly in
terms ofN . Similarly, it follows from Eqs. (4.5) and (4.8) that the number of circles with four nodes increases
as fast asN2.

4.2 ADM Lower Bounds

In this section we derive lower bounds on the number of ADMs subject to that theoptimalnumber of
wavelengths are used for both BLSR/2 and BLSR/4 networks based on the results of previous subsection. Let
g′ be the effective bandwidth of a wavelength so that,

g′ =

{
g
2 for BLSR/2 networks,
g for BLSR/4 networks.

(4.11)

We assume that traffic streams cannot be split and groomed onto different wavelengths. Therefore, a
wavelength may or may not be fully utilized and no more traffic circle can be packed onto the wavelength when
g′ is not an exact multiple ofr. We call this wavelength afully packed wavelength. Otherwise, a wavelength
is called apartially packed wavelengthif more traffic circles can be packed onto it. We use the notation
(xi× i : xj×j) to denote the number of circles of each type to be groomed in a wavelength in whichxi denotes
the number of circles involvingi nodes, andxj denotes the number of circles involvingj nodes, given that the
total number of circles packed onto the wavelength isxi + xj .

We notice that not all circles can be packed onto a wavelength using a single grooming strategy. To char-
acterize the traffic grooming process, we introduce two terms:grooming schemeandgrooming class. Consider
packing a number of circles onto a wavelength, a grooming scheme determines an appropriate combination of
circles (each of which may have a different number of nodes) that can be packed on the wavelength. A grooming
classC is defined as the number of traffic circles that can be packed onto a wavelength (fully or partially packed)
and therefore depends on the magnituder of the traffic streams and the value ofg′. For each grooming class
C, our studies show that it is possible to groom all traffic circles by applying two differentgrooming schemes
(SC

1 , SC
2 ) for fully packed wavelengths and a thirdgrooming scheme(SC

p ) for partially packed wavelengths if
any. These grooming schemes will be specified below.

A few definitions of notations are in order:

• G ∈ {SC
p , SC

1 , SC
2 } denotes thegrooming scheme. Specially,G = SC

p corresponds to the scheme used
for grooming traffic circles onto partially packed wavelength if any whileG = SC

1 andG = SC
2 denote

schemes used for grooming traffic circles onto fully packed wavelengths for grooming classC.

• C ∈ {i : 1 ≤ i ≤ g′} denotes the grooming class. For fully packed wavelengths,C = bg′
r c. For

partially packed wavelengths,C = the number of traffic circles remained to be groomed after no more
wavelengths can be fully packed.

• WG,C(N) is the number of wavelengths onto which full traffic circles are packed using grooming scheme
SC

1 or SC
2 for grooming classC.
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• pC(N) is the number of circles to be groomed onto the partially packed wavelength usingSC
p for groom-

ing classC. Thus,pC(N) ∈ {i : 0 ≤ i ≤ C − 1}.

• pk,C(N) is the number of circles, each of which hask traffic streams to be groomed onto the partially
packed wavelength for grooming classC, wherek ≥ 3 and

∑
k pk,C(N) = pC(N).

• nk,C(N) is the number of circles on the fully packed wavelengths, each of which hask traffic streams.

• dG,C is the number of ADMs per wavelength for grooming classC when grooming schemeG is used.

Let u be the minimum number of nodes involved in groomingC circles, each of which involves three
or four nodes, onto a wavelength. Then based on Eq. (2.3), we have,

C ≤





u2−1
8 if u is odd,

u2

8 + 1 if u is a multiple of 4,

du2

8 e if u is even, not a multiple of 4.

(4.12)

Intuitively, the best utilization of ADMs can be achieved from full circles than open-ended circles. By examin-
ing Eqs. (2.3), (4.4) and (4.5), we know that whenu is odd, all circles are full, each of which involves three or
four nodes. It is also evident from Eq. (4.6) that ifu is incremented by one and made even, the number offull
circles still remains exactly the same (and the additional circles are allopen-ended). Therefore, to determine
the value ofu, it is sufficient to consider only oddu. Eq. (4.12) can be written for oddu for C ≥ 0 as,

C ≤ u2 − 1
8

(4.13)

It is obvious that whenu = 0, C = 0. Therefore, the above inequality can be solved for an odd integer value of
u, and we have,

u(C) =

{
Odd(d√1 + 8Ce) if C > 0,
0 if C = 0

(4.14)

whereOdd(l) is the smallest odd integer that is equal to or greater thanl.

Let v3(u(C)) andv4(u(C)) be the numbers of 3-node and 4-node circles respectively to be groomed
onto a wavelength for grooming classC. In order to achieve better grooming performance, we first groom all
4-node circles. Then the remaining 3-node circles are groomed. From Eqs. (4.5) and (4.4), we have

v4(u(C)) =
(u(C)− 1)(u(C)− 3)

8
, (4.15)

and,

v3(u(C)) = C − (u(C)− 1)(u(C)− 3)
8

. (4.16)

Eqs. (2.3), (4.9), (4.10), (4.14), (4.15) and (4.16) among others will be used as the basis for deriving the ADM
lower bounds for different possible values ofr (1 ≤ r ≤ g′) andC (1 ≤ C ≤ g′). For ease of exposition, we
divide the range ofr into two cases, namely,g

′
2 < r ≤ g′ and1 ≤ r ≤ g′

2 .
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Case 1: g′
2 < r ≤ g′ and C = 1 Since we are not considering splitting of a single traffic stream across

multiple wavelengths, a full wavelength is required for each traffic streamr in the rangeg
′

2 < r ≤ g′ which is the
case whereC = 1. In this case, there is no partially packed wavelength and hencepk,C(N) = 0,WSC

p ,C(N) =
0 anddSC

p ,C(N) = 0. Eqs. (4.9) and (4.10) include all the circles with three and four nodes respectively. Let
the 3-node and and the 4-node circles be groomed usingWSC

1 ,C(N) andWSC
2 ,C(N) wavelengths, respectively.

Therefore,WSC
1 ,C(N) = n3(N), WSC

2 ,C(N) = n4(N), dSC
1 ,C(N) = 3, anddSC

2 ,C(N) = 4.

Case 2:1 ≤ r ≤ g′
2 and 2 ≤ C ≤ g′: For this case, we first determine the parameters for grooming the traffic

streams onto the partially packed wavelength and then determine the parameters for fully packed wavelengths.

Determination of pk,C(N),WSC
p ,C(N) and dSC

p ,C(N) for 1 ≤ r ≤ g′
2 , (2 ≤ C ≤ g′): Using Eq. (2.3), the

number of circles for partially packed wavelength,pC(N) can be computed as,

pC(N) = Nc modbg
′

r
c. (4.17)

When using 3-node and 4-node circles, the minimum number of nodes for groomingpC(N) circles can be
determined from Eq. (4.14) as,

u(pC(N)) =

{
Odd(d

√
1 + 8pC(N)e) if pC(N) > 0,

0 if pC(N) = 0.
(4.18)

The number of circles with three and four traffic streams can be determined from Eqs. (4.18), (4.15), and (4.16)
respectively as,

p4,C(N) =
(u(pC(N))− 1)(u(pC(N))− 3)

8
and, (4.19)

p3,C(N) = pC(N)− (u(pC(N))− 1)(u(pC(N))− 3)
8

. (4.20)

The number of partially packed wavelength,WSC
p ,C(N) is,

WSC
p ,C(N) =

{
1 if pC(N) > 0,
0 if pC(N) = 0.

(4.21)

The number of ADMs for partially packed wavelength,dSC
p ,C(N) is,

dSC
p ,C(N) =

{
u(pC(N)) if pC(N) > 0,
0 if pC(N) = 0.

(4.22)

Determination of WSC
1 ,C(N), dSC

1 ,C(N), WSC
2 ,C(N) and dSC

2 ,C(N) : We address these parameters in two

categories namely, forr = g′
2 and for1 ≤ r < g′

2
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Case 2a: r = g′
2 , (C = 2) This is the case whenr = bg′

2 c and two traffic circles can be packed onto a
wavelength. A fully packed wavelength is also fully utilized ifr is exactly equal tog′

2 . From Eq. (4.14),
u(2) = 5, and from Eqs. (4.15) and (4.16),v4(u(2)) = 1 andv3(u(2)) = 1. In other words, a (1× 4 : 1× 3)
circle combination would be packed onto a wavelength that requires at least5 ADMs. The number of 4-node
circles grows at a higher rate than that of 3-node circles asN grows (Eqs. (4.9) and (4.10)). The number of
3-node circles is equal to that of 4-node circles forN = 7. ForN > 7, the number of 4-node circles is greater
than that of 3-node circles. Therefore, a (1×4 : 1×3) traffic combination may leave some extra 4-node circles.
Since,v4(u(2)) = 1 andv3(u(2)) = 1, each pair of 4-node circles requires one additional ADM beyondu(2),
i.e. u(2) + 1 = 6 ADMs. However, an ADM can be saved in two pairs of 4-traffic circles by converting a
suitable pair of 4-traffic circles into a 5-traffic and a 3-traffic circle, and then groom them using (1× 5 : 1× 4)
and (1 × 4 : 1 × 3) combinations. This requires at least6 + 5 = 11 (instead of12) ADMs. Accordingly, a
5-traffic circle can be produced for every two pairs of additional 4-traffic circles. The number of 4-traffic circles
decreases by two times the number of 5-traffic circles created, while the number of 3-traffic circle increases by
the number of 5-traffic circles. The following equations are obtained as the resulting numbers of circles with
5, 4 and3 traffic streams, respectively:

n5,2(N) =

{
bn4(N)−n3(N)−p3,2(N)

4 c if n4(N) > n3(N) + p3,2(N),
0 otherwise,

n4,2(N) = n4(N)− 2n5,2(N),
n3,2(N) = n3(N)− p3,2(N) + n5,2(N).

(4.23)

Let a (1× 4 : 1× 3) combination constitutes grooming schemeS2
1 . The number of wavelengths for grooming

schemeS2
1 is equal ton3,2(N), i.e. WS2

1 ,2(N) = n3,2(N) anddS2
1 ,2(N) = u(2) = 5. The grooming scheme

S2
2 could use either (1 × 4 : 1 × 5) or (2 × 4) combinations, requiring at leastu(2) + 1 = 6 ADMs. Thus,

dS2
2 ,2(N) = u(2) + 1 = 6 and

WSC
2 ,C(N) =

n3,C(N) + n4,C(N) + n5,C(N)− C ·WSC
1 ,C

C
. (4.24)

Since we are addressing the case for fully packed wavelengths, theadditional4-node circles must be in pairs.
Every two pairs of 4-node circles can be groomed on two wavelengths as described above, and therefore we
can have at most one wavelength left with two 4-node circles.

Case 2b:1 ≤ r < g′
2 and 2 < C ≤ g′ The specific cases we are interested in are for1 ≤ r < bg′

2 c. The case
r = bg′

2 c is the case forC = 2 discussed above. When using 3-node and 4-node circles, the minimum number
of nodes for groomingC circles in a wavelength as determined from Eq. (4.14) isu(C). The number of circles
with three and four traffic streams to be groomed in a wavelength is given by Eqs. (4.18), (4.15), and (4.16).
After grooming circles in the partially packed wavelength, the number of remaining circles with three and four
nodes is determined using Eqs. (4.9), (4.10), (4.19) and (4.20) as,

n4,C(N) = n4(N)− p4,C(N), (4.25)

n3,C(N) = n3(N)− p3,C(N). (4.26)
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From Eq. (4.14), (4.15), and (4.16), it can be shown that at leastu(C) ADMs are required to packC circles in
(v4(u(C))× 4 : v3(u(C))× 3) combinations. ThenWSC

1 ,C(N) can be expressed as

WSC
1 ,C(N)C =

{
b n3,C(N)

v3(u(C))c if v4(u(C)) · n3,C(N) ≤ v3(u(C)) · n4,C(N),

d n4,C(N)
v4(u(C))e otherwise.

(4.27)

In the former case, we have extra 4-node circles while in the latter we have extra 3-node circles. Therefore, in
the former caseSC

2 requires one more ADM thanuC . Thus,

dSC
1 ,C(N) = u(C), (4.28)

dSC
2 ,C(N) =

{
u(C) if v4(u(C)) · n3,C(N) ≥ v3(u(C)) · n4,C(N),
u(C) + 1 otherwise.

(4.29)

and,

WSC
2 ,C(N) =

n3,C(N) + n4,C(N)− C ·WSC
1 ,C

C
. (4.30)

The general ADM lower bounds can then be calculated by summing up ADMs used on each wavelength
and is given in the following theorem.

Theorem 1: The general ADM lower bounds in a BLSR network withN nodes under all-to-all uniform traffic
model (r, g) are

DLB(N, g, r) =

{
N if C ≥ CLB,∑

C,SC
p ,SC

1 ,SC
2

dG,C(N) ·WG,C(N) otherwise,
(4.31)

whereC = bg′
r c andg′ = g for BLSR/4 andg′ = g

2 for BLSR/2 networks.C ≥ CLB is the situation when all
the circles can be groomed onto a single wavelength. 2

5 Proposed Circle Grooming Algorithm

This section presents heuristic algorithms for grooming uniform all-to-all traffic streams in SONET/WDM
BLSR networks. We divide the traffic grooming in two phases: (1) constructing traffic circles, and (2) grooming
the circles onto appropriate wavelengths.Algorithm I andAlgorithm II that construct theoptimalnumber of
circles for odd and even number of nodes (N ) are described in Section 3 and are used in the first phase. For an
oddN , all circles are closed. For an evenN , N(N−2)

8 circles are closed andbN
4 c + 1 circles are open-ended.

The time complexity of the algorithms isO(N2) in both cases.

We have seen inAlgorithm II (for evenN ) that the last open-ended circle involves2·dN
4 e nodes, which

becomes quite large for a largeN , compared to the average number of nodes in a circle given by Eq. (4.2). We,
therefore, develop an auxiliary algorithm,Algorithm III , that restructures the circles obtained in Algorithm
II in order to balance the number of nodes involved in the last open-ended circle. We mentioned in Section 3
where Algorithm II is described that in the last open-ended circle every traffic stream has disjoint nodes. Two
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1. ProcedureadjustLOE Circle () {
2. Loop1: while(number of nodes ins > 6) {
3. i = 0;
4. Loop 2:{
5. ts1 = s(i, i + 1) andts2 = s(i + 2, i + 3);
6. Check whether∃t(k, k + 1) such that
7. t′[k] = s′[i] andt′[k + 1] = s′[i + 3];
8. if (such traffic exists){
9. interchangets1 andts2 with t;
10. goto Loop 1
11. } // end if
12. else incrementi by 2 and goto Loop 2
13. } // end Loop 2
14. if(no more interchange possible)
15. terminate;
16. } // end Loop 1
17. } // end

Figure 4: Algorithm III for balancing the number of nodes in circles in BLSR with evenN .

consecutive traffic streams in this circle involve four nodes with a “gap” between the ending node of a traffic
stream and the starting node of the following traffic stream. We describe the auxiliary algorithm below.

Outline of Algorithm III:

Let m be the number of nodes involved in the last open-ended circle. Lets be the open-ended circle
such thats(i, j) is a traffic stream ins between itsith andjth nodes. Lett be any other 3-node or 4-node circle
such thatt(k, l) is a traffic stream between itskth andlth nodes. Lets′[i] be theith node ofs andt′[j] be the
jth node oft. Let ts1 andts2 be two consecutive traffic streams (there may be a gap between them) in the last
open-ended circle. Figure (4) outlines the algorithm using the notations just defined.

We have found several cases where the improvement on the number of ADMs is quite substantial after
Algorithm III is used. The following example shows that the outcome of applyingAlgorithm III to the circles
constructed byAlgorithm II .

Example 4: N=22
We consider only those circles that are affected byAlgorithm III . Initially, s = (0− 1, 2− 3, 4− 5, 6− 7, 8−
9, 10 − 21),m = 12. In the first iteration,t = (0 − 3 − 11 − 14 − 0). After the first iteration of thewhile
loop, s = (0 − 3, 4 − 5, 6 − 7, 8 − 9, 10 − 21),m = 10, t = (0 − 1, 2 − 3 − 11 − 14 − 0). In the second
iteration,t = (0− 5− 11− 16− 0). After the second iteration,s = (0− 5, 6− 7, 8− 9, 10− 21),m = 8, and
t = (0 − 3, 4 − 5 − 11 − 16 − 0). In the third iteration,t = (6 − 9 − 17 − 20 − 6). After the third iteration,
s = (0−5, 6−9, 10−21),m = 6, andt = (6−7, 8−9−17−20−6). Sincem = 6, the algorithm terminates
after the third iteration.

Notice that both the last open-ended circle and the newly restructured circle have six nodes, and that
the three closed circles are converted into open-ended circles. The number of ADMs obtained from running
Algorithm IV (which is described below) without applyingAlgorithm III for caseg = 16, r = 2 is 95, and is
84 if Algorithm III is applied – a savings of about12%. 2
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We now propose a heuristic algorithm (termed as Algorithm IV) for grooming circles, closed or open-
ended, using a simple greedy approach.

Algorithm IV Steps:
Input: A list of circles constructed using the previous algorithms.
Output: A list wavelengths (using the minimum number of wavelengths required) in which at most one wave-
length could be partially packed and all other wavelengths are fully packed. Each wavelength contains infor-
mation about the placement of ADMs.

• Step 1: Sort the circles in a list in descending order of the number of nodes involved in the circles;

• Step 2: Create a new wavelength channel and groom the first circle in the list onto the wavelength;

• Step 3: If the wavelength has no room for grooming another circle go to Step 8, otherwise, groom a
circle, with all end-nodes overlapping the existing nodes in the wavelength channel if any, and repeat
Step 3, otherwise go to Step 4.

• Step 4: Groom a circle, with one additional end-node if any, and go to Step 3 otherwise go to Step 5.

• Step 5: Groom a circle, with two additional end-nodes if any, and go to Step 3 otherwise go to Step 6.

• Step 6: Groom a circle, with three additional end-nodes if any, and go to Step 3 otherwise go to Step 7.

• Step 7: Groom a circle regardless of the number of additional end-nodes and go to Step 3.

• Step 8: If there are more circles to be groomed then go to Step 2, otherwise terminate.

Although better results are obtained in most cases when the circles are sorted in descending order (Step
1), there are a few cases where better results are obtained without sorting the circles, i.e. without applying Step
1. We run Algorithm IV with and without sorting the circles, as well as with and without applying Algorithm
III (applicable only for evenN ) and obtain the best results as the final traffic grooming.

6 Numerical and Simulation Results

In this section, we evaluate and compare our lower bounds with those obtained in earlier work wherever
applicable. We also study and evaluate the performance of the greedy algorithm for traffic grooming described
in the previous section. As mentioned earlier, our bounds are very general in the sense that they can be applied
for both BLSR/2 and BLSR/4 and that they are equally applicable to any integral value ofg andr. In order to
better compare with the results of previous work, we present our results forg = 16 for BLSR/4 for the same
networks. We do not present the results for the caser = g, where there is practically no grooming and all
bounds exhibit identical performance.

6.1 ADM Lower Bounds

Like our bounds, lower bounds derived in Gerstel et al. [1] are general. But they assume the availability
of wavelength conversion capability in the network. Our bounds are tighter than theirs (Gerstel bounds) in
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Figure 5: (a) Number of ADMs required wheng = 16 andr = 8; (b) Number of ADMs required wheng = 16,
andr = 4.

every case in general as shown in Figs. 5-7. The bounds of [1] are equal to ours only when the total traffic in the
network is less than or equal to one wavelength such that every node requires exactly one ADM. The bounds
in [1] is closer to ours for traffic streams with a larger magnitude (shown in Fig. 5(a)). As the size of the traffic
stream decreases (for a giveng), their bounds get looser for a larger number of nodes – about42% worse than
ours for a 25-node network whenr = 1 andg = 16 as shown in Fig. 7(b).

The bounds in Wan et al. [10] are derived on an implicit assumption thatg is always completely divisible
by r and for BLSR/4 networks. It is not clear whether their bounds can be applied to BLSR/2 networks. Fig. 5
and Fig. 7 demonstrate that our bounds are consistently tighter than the bounds of Wan et al. [10] in every case.
However, the bounds of Wan et al. [10] are not applicable for cases wheng is not completely divisible byr
(i.e., the corresponding curve is not available in Fig. (6)). Note that the bounds of Wan et al. [10] and Gerstel
et al. [1] are identical whenr = g

2 as evident from Fig. 5(a).

Like Wan et al. [10], the bounds in Zhang et al. [2] are calculated for cases wheng is always completely
divisible byr and for BLSR/4 networks. Because no expressions are derived for the bounds, we do not have
the exact values for comparison. However, it is evident from the paper’s graphical presentation (Fig. 4(b) of
Zhang et al. [2]) that our bounds are much tighter than those of [2] by a large margin in all cases.

Simmons et. al. [5] studied BLSR networks for odd number of nodes only. They derived an expres-
sion based on what they call “super-node approximation” to approximate the number of ADMs required and
compared that with the number of ADMs obtained by manual grooming. It turns out that this approximation
expression is quite loose.

6.2 Heuristic Algorithms

Algorithm IV described in Section 5 grooms uniform all-to-all traffic using theoptimal number of
wavelengths. We strongly believe (though without proof) that the number of ADMs could not be reduced
further simply by using more wavelengths in BLSR networks.
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Figure 6: (a) Number of ADMs required wheng = 16 andr = 5; (b) Number of ADMs required wheng = 16
andr = 3.

The results of circle grooming using Algorithm IV depend on the order in which circles are groomed
onto wavelengths. We run Algorithm IV with and without sorting the circles (Step 1 in Algorithm IV), as well
as with and without applying Algorithm III (applicable only for evenN ) and choose the best results as the
final circle grooming. The required number of ADMs are shown in Figs. 5-7 to compare with the ADM lower
bounds.

As seen in Figs. 5-7, in general, our proposed heuristic algorithm performs very well with traffic streams
of larger magnitude (r). Fig. 5(a) and Fig. 5(b) show that the results obtained from the algorithm for casesr = g

2

andr = g
4 are very close to the corresponding lower bounds derived in this paper, particularly whenN is odd.

There are a number of cases where the algorithm generates the optimal number of ADMs for oddN . For even
N , the algorithm requires relatively more ADMs because of the presence of open-ended circles. For other cases
such asr = bg

3c, r = bg
5c, r = g

8 , or r = g
16 , the algorithm performs reasonably well as depicted in Fig. 6

and Fig. 7. Note that in cases when the total number of circles in the network can be accommodated in one
wavelength, optimal results are obtained (Fig. 6).

We could not compare the performance of our algorithm with the heuristic algorithm presented in Zhang
et al. [2] since the numbers are not available. In addition, their circle construction algorithm does not include
all traffic streams when the number of nodes is even as pointed out earlier. However, rough visual comparison
shows that our algorithm performs better than theirs. For example, our algorithm uses 127 ADMs and theirs
requires about 131 ADMs (Fig. 4(b) of Zhang et al. [2]) whenN = 19 andr = 8.

7 Conclusions

In this paper, we have studied traffic grooming in SONET/WDM BLSR networks under the uniform the
all-to-all traffic model with an objective to reduce total network costs (wavelength and electronic multiplexing
costs), in particular, to minimize the number of ADMs while using the optimal number of wavelengths. We

20



0

20

40

60

80

100

120

0 5 10 15 20 25

N
um

be
r 

of
 A

D
M

s

Number Of Nodes

Heristic Alg
Our Lower Bound

Lower Bound(Gerstel)
Lower Bound (Wan)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

N
um

be
r 

of
 A

D
M

s

Number Of Nodes

Heristic Alg
Our Lower Bound

Lower Bound(Gerstel)
Lower Bound (Wan)

(a) (b)

Figure 7: (a) Number of ADMs required wheng = 16 andr = 2; (b) Number of ADMs required wheng = 16
andr = 1.

derive a new tighter lower bound for the number of wavelengths when the number of nodes is a multiple of4.
We show that this lower bound is achievable. We then derive new, more general and tighter lower bounds for the
number of ADMs subject to thatthe optimal number of wavelengths is used, and propose heuristic algorithms
(circle construction algorithm and circle grooming algorithm) that try to minimize the number of ADMs while
using the optimal number of wavelengths in BLSR networks. Both the bounds and algorithms are applicable
to any value ofr and for different wavelength granularityg. Performance evaluation shows that wherever
applicable, our lower bounds are at least as good as existing bounds and are much tighter than existing ones
in many cases. Our proposed heuristic grooming algorithms perform very well with traffic streams of larger
magnitude. The resulting number of ADMs required is very close to the corresponding lower bounds derived
in this paper. This work can be extended in a number of avenues, e.g., consider a distance-dependent traffic
model, take into account transceiver tunability, and so on.
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